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Nuclear Magnetic Resonance

Zero Field Applied Field

B

NMR signal is proportional to population difference
For 1H in 9.4T at 298K

ω = γ B

magnetogyric ratio
fundamental nuclear constant Sensitivity is an issue! Need Large γ and/or B



Common Isotopes

Isotope Spin ϒ
107 T-1 rad s-1

Freq
MHz @ 9.4T

Abundance
%

1H 1/2 26.75 400 100

13C 1/2 6.73 100.6 1.1

29Si 1/2 -5.32 79.6 4.7

31P 1/2 -10.84 162.1 100
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1H 1/2 26.75 400 100

13C 1/2 6.73 100.6 1.1

29Si 1/2 -5.32 79.6 4.7

31P 1/2 -10.84 162.1 100

17O 5/2 -3.63 54.1 0.04

49Ti 7/2 -1.51 22.6 5.41



Solid-State NMR Spectrometers

Image courtesy Sharon Ashbrook (St Andrews)



Magnetic Shielding

Flurbiprofen
non-steriodal anti-inflamatory

Each distinct C atom experiences a different magnetic field and resonates at a unique frequency.

Measure the change wrt a standard (for 13C this is liquid tetramethylsilane)



Magnetic Shielding

magnetic shielding
Orbital Current induced by B-

field in Porphyrin ring

Blocal = B0+Binduced

Blocal  = (1-σ)B0

ω = γ Blocal

Measure Larmor frequency

What is the local field?



Induced Current

Biot-Savart

Obtain current within perturbation 
theory (linear response) 

To compute the chemical shifts we just need to calculate 
the current induced by the external magnetic field

note: σ is a rank 2 tensor
spin contribution averages to zero in a 

diamagnetic insulator

B  = (1-σ) B0
Bin  = -σ B0
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equivalently and by convention, within the 1st Brillouin
Zone.

The problem of solving for an infinite number of elec-
trons has become one of calculating for a finite number
of bands at an infinite number of k-points. However,
physical properties are expected to be smoothly varying
functions of k and hence many integrals can be well ap-
proximated by a finite sampling of k. A common scheme
for Brillouin Zone integration are the sets of regular in-
tegration grids introduced by Monkhorst and Pack.

1. The supercell approximation

The application of periodic boundary conditions forces
periodicity on the system studied. To address systems
which do not have full three dimensional translational
symmetry — for example the study of defects, impuri-
ties or even the interaction of molecules and surfaces,
the supercell approximation can be used. Aperiodic sys-
tems are approximated by enclosing the region of in-
terest in either bulk material (for a defect) or vacuum
(for a molecule) and then periodically repeating this cell
throughout space (Figure??) The supercell must be large
enough for the fictitious interactions between neighboring
cells to be negligible.

C. The planewave basis set

In order to solve the eigenvalue problem of Equation 2
numerically the eigenstates must be represented by some
basis set. While there are many possible choices, the one
made here is to use planewaves as the basis. There are
many advantages in the use of planewaves: they form
a mathematically simple basis, they naturally incorpo-
rate periodic boundary conditions, and, perhaps most
importantly planewave calculations can be taken system-
atically to convergence as a function of the size of the
basis. The Kohn-Sham eigenstates are expressed as,

Ψn
k(r) =

∑

G

cn
k(G)ei(k+G).r, (5)

where the sum is over all reciprocal lattice vectors G.
To truncate the basis set the sum is limited to a set of
reciprocal lattice vectors contained within a sphere with
a radius defined by the cutoff energy, Ecut:

!2|k + G|2

2m
≤ Ecut. (6)

Hence, the basis set is defined by the maximum kinetic
energy component it contains. Physical quantities can be
converged systematically by increasing Ecut. (figure of
shielding convergence) A Fast-Fourier Transform (FFT)
can be used to change the representation of the eigen-
states from a sum of Fourier components to to a uniform
grid of points in the real-space unit cell. The use of nu-
merically efficient FFTs is one key to the success of the

planewave/pseudopotential formalism - it allows individ-
ual operations to be performed in the most efficient basis,
e.g. the kinetic energy operator in Fourier space, and a
local potential in real space.

D. The pseudopotential approximation

The electrons in an atom can be divided into two types
— core electrons and valence electrons. The core elec-
trons are tightly bound to the nucleus, while the valence
electrons are more extended. A working definition for
core electrons is that they are the ones which play no part
in the interactions between atoms, while the valence elec-
trons dictate most of the properties of the material. It
is common to make the frozen core approximation. The
core electrons are constrained not to differ from their
free atomic nature when placed in the solid state envi-
ronment. This reduces the number of electronic degrees
of freedom in an all electron calculation. It is a very
good approximation. A different, but physically related,
approach is taken in the pseudopotential approximation.

Since, in an all electron calculation, the valence elec-
tron wavefunctions must be orthogonal to the core wave-
functions they necessarily have strong oscillations in the
region near the nucleus (see the all electron wavefunction
in Figure 3). Given that a planewave basis set is to be
used to describe the wavefunctions, these strong oscilla-
tions are undesirable — requiring many plane waves for
an accurate description. Further, these oscillations are of
very little consequence for the electronic structure in the
solid, since they occur close to the nucleus, and interact
little with the neighboring atoms. In the pseudopotential
approach only the valence electrons are explicitly consid-
ered, the effects of the core electrons being integrated
within a new ionic potential. The valence wavefunctions
need no longer be orthogonal to the core states, and so
the orthogonality oscillations disappear, hence far fewer
plane waves are required to describe the valence wave-
functions.

IV. CHEMICAL SHIELDING IN A PERIODIC
SYSTEM

When a sample of matter is placed in a uniform, exter-
nal magnetic field electronic currents flow throughout the
material. For an insulating, non-magnetic material only
the orbital motion of the electrons contribute to this cur-
rent. The current j(r), produces a non-uniform induced
magnetic field in the material, which is given by the Biot-
Savart law as

Bin(r) =
1

c

∫
d3r′j(r′) ×

r − r′

|r − r′|3
. (7)

The chemical shielding tensor is defined as the ratio be-
tween this induced field, and the external applied field

Bin(r) = −σ⃗(r)Bext. (8)



First-principles NMR

Calculate forces 
refine structure

Calculate chemical 
shifts

Crystal Structure 
X-ray, Neutron diffraction 

Cambridge Structural Database 

C1 -0.602 -0.537 6.384
C2  0.135  0.622 5.689
H1  0.257  0.361 4.639 
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Examples

13C axis

1H
 axis

Maltose
sugar used in brewing

MAS-J-HMQC
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molecule only

13C axis

1H
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Examples

Maltose
sugar used in brewing

MAS-J-HMQC



x - first principles
full crystal

1H
 axis

Examples

J. Am. Chem. Soc. 127 10216 (2005)

Molecule to solid 
variation due to 
intermolecular 
interactions (weak 
hydrogen bonds)

13C axis



Magnetic Shielding vs Chemical Shift

σ magnetic shielding 

ω = γ Bloc

Bloc  = (1-σ) B0

Larmor frequency

�iso =
(⇥ � ⇥ref)⇥ 106

⇥ref

Experiment - Chemical Shift

Result is now independent of the spectrometer frequency and isotope
Standard compounds for reference frequency 

 beware of those with two standards (eg N)

Calculation - Magnetic Shielding

where ⌫ref is the resonance frequency of a standard reference sample. The magnetic shielding
and chemical shift are related by

� =
�ref � �sample

1� �ref
. (7)

For all but very heavy elements |�ref |⌧ 1 and so

� = �ref � �sample. (8)

Strategies for converting between calculated magnetic shielding and observed chemical shift have
been discussed in Ref. [2]. (JRY: Is this the place to discuss anisotropy? It’s tricky given the
multiple definitions!)

1.2 Spin-spin coupling

In the previous section we considered the e↵ect of the magnetic field at a nucleus resulting from
an externally applied field. However, there may also be a contribution to the magnetic field at
a nucleus arising from the magnetic moments of the other nuclei in the system. In an e↵ective
spin Hamiltonian we may associate this spin-spin coupling with a term of the form

H =
X

K<L

IK(DKL + JKL)IL. (9)

DKL is the direct dipolar coupling between the two nuclei and is a function of only the nuclear
constants and the internuclear distance,

DKL = �
~
2⇡

µ04⇡�K�L
3rKLrKL � 1r2

L

r5
KL

(10)

where rKL = RK�RL with RL the position of nucleus L. DKL is a traceless tensor and its e↵ects
will be averaged out under MAS. JKL is the indirect coupling and represents an interaction of
nuclear spins mediated by the electrons. The J-coupling is a small perturbation to the electronic
ground-state of the system and we can identify it as a derivative of the total electronic energy
E, of the system

JKL =
~�K�L

2⇡

@2E

@mK@mL
(11)

An equivalent expression arises from considering one nuclear spin (L) as perturbation which
creates a magnetic field at a second (receiving) nucleus (K)

B(1)
in (RK) =

2⇡

~�K�L
JKL · mL. (12)

Eqn. 12 tells us that the question of computing J is essentially that of computing the magnetic
field induced indirectly by a nuclear magnetic moment. The first complete analysis of this
indirect coupling was provided by Ramsey[3, 4]. When spin-orbit coupling is neglected we
can consider the field as arising from two, essentially independent, mechanisms. Firstly, the
magnetic moment can interact with electronic charge inducing an orbital current j(r), which in
turn creates a magnetic field at the other nuclei in the system. This mechanism is similar to
the case of magnetic shielding in insulators. The second mechanism arises from the interaction
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Magnetic Shielding vs Chemical Shift

δ

-σ

σref

(expt)

(calc)
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Compute reference compound
Compute secondary reference
Use literature value
Adjust to match average



Magnetic Fields - an aside

Induced Field

Fermi Contact

Orbital

Spin Dipolar

Can create a magnetic field in two ways:
1- Intrinsic spin of electrons (i.e. a magnetisation density)
2- Charge of electrons (moving charge gives magnetic field)



NMR Interactions

Chemical Shift

Quadrupolar coupling spin-spin coupling (J-coupling)

orbital currents create magnetic field

nuclei with I>1/2 interact with gradient of 
electric field (non-spherical charge density)

Direct Dipolar Coupling
magnetic field created by neighbouring nuclei

n.b. function of atom positions only i.e. not directly an 
electronic property

magnetic field induced by neighbouring nuclei 
but mediated via valence electrons

Simulation of Observed Spectra

In general not a simple function of NMR interaction tensors. Need to 
consider experimental conditions (which NMR experiment). Several 

sophisticated codes to handle this e.g. SIMPSON, Spinevolution 
(virtual spectrometers)



J-coupling

Electron-mediated interaction 
of nuclear spins

No  J-coupling

with J-coupling

anti-parallelparallel

J

A B
Nucleus A causes a magnetic field at 

nucleus B (and vice versa)

In solids J is rarely revealed in splitting 
of peaks in 1D spectra (anisotropic 
interactions broaden peaks)

Increasing use of techniques, eg those 
using spin-echo modulation, to 
measure J in solids.



Spin-Spin (J) coupling

DressedBare

Effective Hamiltonian

Indirect Coupling (note E here omits the nuclear-
nuclear magnetic interaction)

Orbital  Magnetic dipole induces orbital motion of electrons Spin Magnetic dipole induces spin density 

C C HH
Orbital Current Induced Spin density



J-coupling

self-assembles into ribbons
molecular electronics (FET)

a

b

a

b
2hJN7b,N1a

2hJN7a,N1b

2hJN7b,N1a = 6.2±0.4 Hz (expt)
6.5 Hz        (calc)

2hJN7a,N1b = 7.4±0.4 Hz (expt)
7.7 Hz        (calc)

Guanosine

J. Am. Chem. Soc. 130, 12663 (2008)

FULL PAPER G. Gottarelli, P. Mariani et al.

¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002 0947-6539/02/0809-2144 $ 20.00+.50/0 Chem. Eur. J. 2002, 8 , No. 92144

NMR spectrum that slowly transforms into a different
spectrum corresponding to the ribbon stable in CHCl3
solution (ribbon II); the transition from ribbon I to ribbon II
is faster in the presence of moisture in the solvent.[12] These

ribbons seem particularly interesting as their ordered molec-
ular layers, which are obtained on solid surfaces by evapo-
ration of the LC phase in CHCl3, display rectifying[15] and
photoconductive properties.[16]

In a preliminary communication[17] we have described a new
lyomesophase formed by derivative 1 in hexadecane; more
recently, Kato and co-workers have reported thermotropic[18]

and lyotropic[19] phases formed by folic acid derivatives due to
similar hydrogen-bond patterns. In this paper, we report the
structure of ribbon I, obtained from single-crystal X-ray
diffraction of deoxyguanosine derivative 3, and a study of
the gel-like liquid crystals formed in different solvents by
derivatives 1 and 2 and by the two other guanosines 4 and 5,
which belong to the ribo series and contain the acetonide
group. We believe that the variations of the gel-like structures
with the chemical constitution of the gelators and with the
solvent yield a good understanding of the self-assembly
process leading to the gel-like phases,[20] and that the presence
of the two different ribbons in the different lyomesophases is
remarkable.

Results and Discussion

X-ray single-crystal study : Compound 3 crystallises in the
chiral group P1, with two independent molecules in the
asymmetric unit. The two molecules differ in the conforma-
tion of the lateral chains attached to the guanosine skeleton,
as can be seen in Figure 2.

The two types of molecules interact in the solid state by
means of hydrogen bonding between the guanine residues
(Figure 3). The NH group of the six-membered ring interacts
exclusively with the N atom of the five-membered ring
(N(H) ± N 2.827(2) and 2.909(2) ä). The two H atoms on the
NH2 groups interact with the oxygen atom on the six-

Abstract in Italian: I derivati lipofili della guanosina allo stato
cristallino e in soluzione sono autoassociati in aggregati a
nastro. La struttura dei nastri e¡ stata caratterizzata mediante
diffrazione dei raggi X da cristallo singolo e, in soluzione,
mediante NMR e ESI-MS. Allo stato solido e in soluzione
cloroformica sono presenti due diversi nastri con un diverso
schema di legami a idrogeno. Le fasi di tipo gel ottenute in
esadecano, toluene e cloroformio sono state studiate con la
microscopia ottica e la diffrazione dei raggi X a basso angolo:
il tipo di fase osservata e¡ in relazione con la struttura
molecolare dei composti e dipende fortemente dal solvente
presente. Vengono discusse le strutture delle fasi tenendo in
considerazione la presenza dei due diversi nastri.

Figure 1. Hydrogen-bond pattern of the two ribbonlike assemblies of guanosine derivatives.



Silicophophates

Si5O(PO4)6 

Si1 O5 P

2JSiP

17 Hz

Si2 O2 P 16 Hz

15±2 Hz

14±2 Hz

Expt Theory

Si3 O5 P 14 Hz

Si2 O2 P 1 Hz

12±2 Hz

4±2 Hz

Expt: Inorg. Chem. 46, 1379 (2007) 
Calc: J. Chem. Phys. 127, 204107 (2007)

   
Si2

O5
O5

O5

O2

O2

O2

P

P

P

P

P

P

14±2 (16) Hz

4±2 (1) Hz

Christian Bonhomme (Paris)



Role of Calculations of J

F1

F7
F3

3.18Å

2.74Å

1iJFF            Expt          Calc
F1-F3:   18 Hz     12.5 Hz
F1-F7:   2.6 Hz      3.6 Hz

fluorine-substituted deuterated hydrous magnesium silicate

Design and optimisation of NMR experiments
Interpretation of experiment

Through-space J-coupling Distributions of J in amorphous solids 

silica glass

Si-O-Si (deg)

J. Am. Chem. Soc. 132 15651 (2010



Electric Field Gradients
Function of the charge density - ie ground-state property. 

Also computed by all-electron codes such as Wien2k, Crystal

EFG

charge
density

Eigenvalues

Quadrupolar Coupling

Asymmetry

Note: The quadrupolar moment, Q, is a nuclear property. Most recent 
values given in “Year-2008 Standard Values of Nuclear Quadrupole 
Moments”: P. Pyykkö, Mol. Phys. 106, 1965-1974 (2008)
But note Q appears as a simple scaling factor 17O MAS Glutamic Acid . HCl

6 COMPUTATIONS OF MAGNETIC RESONANCE PARAMETERS FOR CRYSTALLINE SYSTEMS: PRINCIPLES

localized functions, the gauge-origin problem, well known in
quantum chemical approaches (see Shielding: Overview of
Theoretical Methods), has been introduced. In short, equation
(25) will require an infinitely large number of projectors
in order for the computed shieldings to be translationally
invariant (i.e., independent of the choice of gauge origin). To
address this problem, Pickard and Mauri8 introduced a field-
dependent transformation operator T B, which, by construction,
imposes the translational invariance exactly:

TB = 1 +
∑

R,n

e
ie
2h r·R×B[|φR,n⟩ − |φ̃R,n⟩]⟨p̃R,n|e− ie

2h r·R×B (26)

The resulting approach is known as the gauge including
projector augmented wave (GIPAW ) method. Although orig-
inally formulated for norm-conserving pseudopotentials, the
extension to the more computationally efficient ultrasoft pseu-
dopotentials has been presented by Yates et al .13 Figure 4
shows shieldings computed using ultrasoft pseudopotentials
and the GIPAW scheme, together with large basis set quantum-
chemical calculations. For the shieldings in these isolated
molecules, the agreement is essentially perfect. For crystalline
systems, validation of the technique comes only from compar-
ison to NMR experiments; numerous studies have been made
in recent years, just two are mentioned in section “Examples”.

4 OTHER MAGNETIC RESONANCE PARAMETERS

4.1 Electric Field Gradient

For a quadrupolar nucleus (spin I > 1/2), the observed
NMR response includes an interaction between the quadrupole
moment of the nucleus Q, and the electric field gradient (EFG)
generated by its surroundings. The EFG is a second rank,
symmetric, traceless tensor V (r) given by

Vαβ(r) = ∂Eα(r)
∂rβ

− 1
3
δαβ

∑

γ

∂Eγ (r)
∂rγ

(27)

where α,β,γ denote the Cartesian coordinates x,y,z and Eα(r)
is the local electric field at the position r, which can be
calculated from the charge density n(r):

Eα(r) =
∫

d3r
n(r)

|r − r′|3
(rα − r ′

α) (28)

The EFG tensor is then equal to

Vαβ(r) =
∫

d3r
n(r)

|r − r′|3

[

δαβ − 3
(rα − r ′

α)(rβ − r ′
β)

|r − r′|2

]

(29)

To compute the EFG tensor in a periodic system is less
demanding than calculating either the shielding or indirect
coupling tensors, as it requires only knowledge of the ground-
state charge density, ground-state wavefunctions and the
position of the ions in the unit cell—no linear response
calculation is required.

The quadrupolar coupling constant, CQ and the asymmetry
parameter, ηQ can be obtained from the diagonalized electric
field gradient tensor whose eigenvalues are labeled VXX, VYY,
VZZ, such that |V ZZ|>|V XX|>|V YY|:

CQ = eVZZQ

h
(30)

and
ηQ = VYY − VXX

VZZ
(31)

Within the planewave-pseudopotential approach, the charge
density is expressed as the sum of three terms,15 and there
are correspondingly three distinct contributions to the EFG.
First, there is a contribution arising from the ionic charges
(sum of the nuclear and core-electron charge). From the site
under consideration, this appears as an infinite lattice of point
charges whose EFG contribution can be obtained using an
Ewald summation. Secondly, there is the contribution of the
pseudized valence charge density, which is evaluated by using
a reciprocal space form of equation (29). Finally, there is a
PAW contribution to account for the difference between the
pseudo and all-electron charge densities on the atomic site
under consideration.

4.2 Indirect Coupling

The indirect (or J ) coupling manifests itself in splittings of
the NMR resonance, or as a modulation of the spin-echo signal.
Physically, the coupling arises from the interaction of two
nuclei, K and L, with magnetic moments, µK and µL, mediated
by the electrons in the system. The first complete analysis
of this indirect coupling was provided by Ramsey16,17 who
showed that the J -coupling tensor,

←→
J KL, is obtained from

the magnetic field induced at nucleus K due to the perturbative
effect of nucleus L,

B(1)
in (RK) = !γKγL

2π

←→
J KL · µL (32)

where γ K and γ L are the gyromagnetic ratios of nuclei K
and L. At the nonrelativistic level, two distinct mechanisms
contribute to B(1)

in (RK). First, the nuclei interact via the
electronic charge; the nucleus L induces an orbital current
j(1)(r) which, in turn, creates a magnetic field at nucleus K.
The nuclei also interact via the electronic spin; the nucleus L
inducing a polarization of the electronic spin, m(1)(r), which
also contributes to the magnetic field at nucleus K. B(1)

in (RK)
is given by

B(1)
in (RK) = µ0

4π

∫
m(1)(r) ·

[
3rKrK − |rK|2

|rK|5

]
d3r

+ µ0

4π

8π

3

∫
m(1)(r)δ(rK) d3r

+ µ0

4π

∫
j(1)(r) × rK

|rK|3
d3r (33)

rN = r − RN with RN the position of nucleus N; δ is the Dirac
delta function.



Practical Details

task        : magres 
magres_task : shielding 

     efg 
     nmr 
  jcoupling

chemical shift/shielding

electric field gradient

both

*.param file

Must use on-the-fly pseudopotentials

Highly sensitive to geometry (optimise H X-ray positions)

CONVERGE 
(basis cut-off & k-points) 



*.castep file

  =========================================================== 
  |              Chemical Shielding Tensor                  | 
  |---------------------------------------------------------| 
  |     Nucleus                   Shielding tensor          | 
  |  Species   Ion            Iso(ppm)   Aniso(ppm)  Asym   | 
  |    H       1               23.81       5.27      0.40   | 
  |    H       2               24.75      -3.35      0.85   | 
  |    H       3               27.30      -5.79      0.90   | 

  |    O       5              -43.73     504.95      0.47   | 
  |    O       6              -63.53     620.75      0.53   | 
  |    O       7              -43.73     504.95      0.47   | 
  |    O       8              -63.53     620.75      0.53   | 
  =========================================================== 

 

Anisotropy Asymmetry



*.magres file
============
Atom: O    1
============
O    1 Coordinates      1.641    1.522    5.785   A
 
TOTAL Shielding Tensor

             218.1858     12.1357    -25.7690
              13.4699    191.6972     -7.2419
             -25.9178     -6.5205    216.3180

O    1 Eigenvalue  sigma_xx     185.6127 (ppm)
O    1 Eigenvector sigma_xx       0.5250     -0.8103      0.2603
O    1 Eigenvalue  sigma_yy     193.8979 (ppm)
O    1 Eigenvector sigma_yy       0.4702      0.5310      0.7049
O    1 Eigenvalue  sigma_zz     246.6904 (ppm)
O    1 Eigenvector sigma_zz      -0.7094     -0.2477      0.6598
 
O    1 Isotropic:      208.7337 (ppm)
O    1 Anisotropy:      56.9351 (ppm)
O    1 Asymmetry:        0.2183

 

Note: shielding tensor has a symmetric and an antisymmetric component. 
Typical NMR experiments are only sensitive to the symmetric part. 
Therefore we only diagonalise the symmetric part of the shielding tensor





J-coupling

A single calculation give the coupling between one (perturbing) atoms and all 
others. Might need several calculations to get all of the couplings of interest.

Perturbing atom breaks periodicity - if the unit cell is small you might need to 
build a supercell to inhibit the interaction with periodic images 



J-coupling

  =========================================================================== 
  |                         Isotropic J-coupling                            | 
  |-------------------------------------------------------------------------| 
  |     Nucleus                        J-coupling values                    | 
  |  Species   Ion     FC           SD         PARA       DIA       TOT(Hz) | 
  |    O       1      25.37        0.31       -5.61        0.10       20.18 | 
  |**  Si      1       —.—          —.—         —.—         —.—        —.—  | 
  |    Si     10      12.41       -0.04        0.41        0.01       12.79 | 
  |    Si     16      17.97        0.07        0.43        0.01       18.48 | 
  |    Si     30      14.40        0.23        0.39        0.01       15.03 |

            Bond         Length (A)  1st image     Iso(Hz)     Aniso(Hz) 
      ================================================================== 
      Si 001 --  O 001   1.61808     12.06908       20.18       57.86 
      Si 001 -- Si 038   3.02674     11.25096       12.90        3.09 
      Si 001 -- Si 010   3.03908      7.70290       12.79        3.47 
      Si 001 -- Si 016   3.09623      9.83675       18.48        6.54 
      Si 001 -- Si 030   3.17013     11.91281       15.03        8.39

Perturbing atom

Contributions to J-coupling
Spin: Fermi Contact (FC)     Spin Dipolar (SD)
Charge: Paramagnetic (PARA) and Diamagnetic (DIA) - terms similar to shielding

note: only total J is observable



Practical Things

Structure
NMR is very sensitive to structure! 
XRD atom positions are often not sufficient for accurate simulation of 

NMR parameters

Dynamics
Atoms move - spectra are recorded at finite T. 
How to account for that in (static) calculations?

Accuracy
How good are our present (approximate) density functionals?

Some practical things to keep in mind



Challenges

Effects of Relativity
scalar relativistic effects easy to treat (relativistic_treatment)
spin-orbit interaction is much harder - but needed for eg shifts on light 

atoms bonded to heavy atoms

Localised d/f Electrons
Local Density Approximation not enough

Paramagnetic Materials
Magnetic fields from electronic spin
   Curie type paramagnetism is hard

Pauli (i.e. Knight Shift) now implemented



Limitations

TiP2O7
1020 atoms 8000 electrons
~42 hours on 384 cores (2Tb RAM)
“archer” UK national facility

Pharmaceutical
980 atoms 3000 electrons
~24 hours on 96 cores
local cluster



Maltose Again

Compare Calculation with experiment 
C-H max error 0.3ppm (mean 0.1ppm)
O-H max error 0.6ppm (mean 0.4ppm)

Why are there larger errors for hydroxyl protons?

CH
J. Am. Chem. Soc. 127 10216-10220 (2005)
OH
Phys. Chem. Chem. Phys., 12, 6970 (2010)



Variable Temperature

Compare to room temp experiment 
C-H max error 0.3ppm (mean 0.1ppm)
O-H max error 0.6ppm (mean 0.4ppm)

Compare to experiment extrapolated to 0K
C-H (no change)
O-H max error 0.4 ppm (mean 0.1ppm)



Variable Temperature

Compare to room temp experiment 
C-H max error 0.3ppm (mean 0.1ppm)
O-H max error 0.6ppm (mean 0.4ppm)

Compare to experiment extrapolated to 0K
C-H (no change)
O-H max error 0.4 ppm (mean 0.1ppm)

O-H C-H



Thermal motion

Ways to incorporate thermal effects:

Use a crystal structure obtained at finite temperature

Take into account vibrations: 
Compute the phonon frequencies. 
Generate an ensemble of structures corresponding to a population of phonons. 
Average results. 
Note this gives a correction even at 0K (zero point motion)

Molecular dynamics

see Dumez and Pickard J. Chem. Phys. 130, 104701 (2009)



Getting more information

NMR Books
Good Introduction
Nuclear Magnetic Resonance (Oxford Chemistry Primers)
P. J. Hore

More advanced
Spin Dynamics: Basics of Nuclear Magnetic Resonance 
Malcolm H. Levitt

Solid state NMR
Solid-State NMR: Basic Principles and Practice
David Apperley, Robin Harris, Paul Hodgkinson

Useful survey of applications
Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic 
Materials 
Kenneth J.D. MacKenzie, M.E. Smith

Recent Review Articles
Perspective: Current advances in solid-state NMR spectroscopy   
J. Chem. Phys. 149, 040901 (2018); https://doi.org/10.1063/1.5038547
Sharon E. Ashbrook and Paul Hodgkinson

http://www.amazon.co.uk/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=P.%20J.%20Hore
http://www.amazon.co.uk/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=Malcolm%20H.%20Levitt
http://www.amazon.co.uk/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=Kenneth%20J.D.%20MacKenzie
http://www.amazon.co.uk/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-uk&field-author=M.E.%20Smith


Getting more information

Exhaustive (and exhausting!) review of applications and theory 
First-Principle Calculation of NMR Parameters Using the GIPAW (Gauge Including Projector Augmented Wave) Method: a 
Chemist's Point of View
Bonhomme, Gervais, Babonneau, Coelho, Pourpoint, Azais,  Ashbrook, Griffin, Yates, Mauri, Pickard, 
Chemical Reviews 112 (11), 5733-5779 (2012)

Original Theory Papers:
All-electron magnetic response with pseudopotentials: NMR chemical shifts,
Chris J. Pickard, and Francesco Mauri.
Phys. Rev. B, 63, 245101 (2001)

Calculation of NMR Chemical Shifts for extended systems using Ultrasoft Pseudopotentials
Jonathan R. Yates, Chris J. Pickard, and Francesco Mauri.
Physical Review B 76, 024401 (2007)

A First Principles Theory of Nuclear Magnetic Resonance J-Coupling in solid-state systems 
Sian A. Joyce, Jonathan R. Yates, Chris J. Pickard, Francesco Mauri 
J. Chem. Phys. 127, 204107 (2007)

GIPAW Theory


