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THEORETICAL CHEMISTRY

Density functional theory is
straying from the path toward
the exact functional
Michael G. Medvedev,1,2,3*† Ivan S. Bushmarinov,1*† Jianwei Sun,4‡
John P. Perdew,4,5† Konstantin A. Lyssenko1†

The theorems at the core of density functional theory (DFT) state that the energy of
a many-electron system in its ground state is fully defined by its electron density
distribution. This connection is made via the exact functional for the energy, which
minimizes at the exact density. For years, DFTdevelopment focused on energies, implicitly
assuming that functionals producing better energies become better approximations of
the exact functional. We examined the other side of the coin: the energy-minimizing
electron densities for atomic species, as produced by 128 historical and modern DFT
functionals. We found that these densities became closer to the exact ones, reflecting
theoretical advances, until the early 2000s, when this trend was reversed by unconstrained
functionals sacrificing physical rigor for the flexibility of empirical fitting.

D
ensity functional theory (DFT) is indis-
pensable for modern quantum-chemical
modeling of materials and molecules (1).
At its theoretical core are the Hohenberg-
Kohn theorems (2), which show that all

ground-state properties of a many-electron sys-
tem are uniquely determined by that system’s
electron density distribution function over space.
There exists an exact functional that yields the
exact energy of a system from its exact density.
Minimization of this functional at a fixed elec-
tron number and a fixed external potential yields
the exact electron density and energy, but at an
unbearable computational cost (3). Modern DFT

relies on approximations of the exact functional
(specifically its exchange-correlation term),which
tend to provide an excellent cost/accuracy ratio
and are believed to be improving in overall accu-
racy (4, 5). Most of them were constructed em-
pirically; the coefficients in the corresponding
formulas were chosen so that energy differences
for some chosen systemswere as close to known
targets as possible. This approach, however, over-
looks the fact that the reproduction of exact
energy is not a feature of the exact functional,
unless the input electron density is exact as well.
Hence, pure energy fitting does not necessarily
lead toward the exact functional, nor does good

performance of a functional in energetic tests re-
flect its closeness to the exact functional. Rather,
such fidelity requires the approximate functional
to produce both energies and electron densities
close to the exact ones. Although it was implicitly
assumed that functionals improve along with
their energies, this assumptionwas never tested
directly.
An alternative, frequently nonempirical, ap-

proach to functional design is based on con-
straint satisfaction—that is, obeying the known
features of the exact functional. However, this
method also cannot guarantee closeness to the
exact functional, because the number of known
exact constraints is severely limited. Peverati and
Truhlar (4) in particular argued that known exact
constraints can beneglected for the sake of greater
flexibility in the energy fitting.
Here, we compared the electron density dis-

tributions produced by 128 available functionals
with the correct ones [as produced by all-electron
coupled cluster singles and doubles (CCSD-full)
calculations, which provide nearly exact electron
densities for the systems studied]. The historical
andmethodological trends revealed by this study
may provide a helpful viewpoint on density func-
tional development.
To our knowledge, correct reproduction of exact

electron density has rarely been a parameteriza-
tion target during the development of currently
available functionals. There was an unsuccessful
attempt to use molecular electron densities for
reparameterization of a three-parameter hybrid
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Fig. 1. The historical trends in
maximal deviation of the density
produced by various DFTmethods
from the exact one. (A) The line
shows the average deviation, with
the light gray area denoting its
95% confidence interval; hGGA*
denotes 100% exact exchange-based
methods. (B) The bars denote
averages of DFT functionals’median-
normalized absolute error for
energy [open bars,Truhlar’s data (4)]
and electron density with its
derivatives (solid bars, this work)
per publication decade.
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B3LYP (6); Csonka et al. also demonstrated (7)
that the electron density along the bond inH2 can
be reproduced with high precision by reparameter-
ization of B3P86. TheHCTH407 (8) and B97-2 (9)
functionals were fitted to reproduce the profile
of nearly exact exchange-correlation potentials
(and thereby densities) of some atomic and mo-
lecular systems. Electron densities produced by
several DFT functionals have already been tested
in various studies [(10–15) and references therein],
butmodernhighly parameterized functionalswere
not included.
An attempt to make a fair comparison of den-

sities produced by DFT functionals imposes se-
vere constraints on the systems available for study.
The results for molecules would be ambiguous
because for typical approximate functionals, accu-
rate molecular energies and densities arise only
from an understood but uncontrollable error can-
cellation between a functional’s exchange and
correlation components (5). Atoms, however, have
been identified as “appropriate norms” (5) for
which the exchange and correlation components
can be separately accurate. Failure to describe
atoms correctly indicates internal problems of a
calculationmethod, which can be expected to pro-
pagate to larger systems.
Therefore, we compared calculation results for

isolated atoms and atomic cations with 2, 4, or 10
electrons: Be0, B3+, B+, C4+, C2+, N5+, N3+, O6+, O4+,
F7+, F5+, Ne8+, Ne6+, and Ne0. All these systems
have nondegenerate ground states, so high-level
single-reference methods such as CCSD-full pro-
vide a standard of accuracy (12). Anions were not
included, because semilocal functionals can only
bind a fraction of an electron to any neutral atom.
Thus, the errors in the densities of anions would
reflect not only the functional but also the basis
set, and would not fairly measure the relative per-
formances of functionals.
We considered theperformance of 128DFT func-

tionals, includingmost available fromGaussian09
D.01 (16) and GAMESS-US 20130501R1 (17) codes
as separate keywords. In addition, all combi-
nations of pure exchange with pure correlation
functionals in GAMESS, aswell as several notable
literature methods available by adjusting func-
tional parameters in Gaussian, were considered.
Modern meta-GGAs—MS0, MS1, MS2, MVS, and
SCAN—developed by some of us (18) were also in-
cluded in the comparison. The tested functionals
correspond to the local density approximation
(LDA), the generalized gradient approximation
(GGA), meta-GGA (mGGA), and hybrid (hGGA)
rungs (19). See the supplementarymaterials for a
full list with appropriate citations and reasoning.
To compare DFT with wave function–based

methods, we included Hartree-Fock (HF) and
Møller-Plesset perturbation [MP2-full, MP3-full,
andMP4(sdq)-full] in the comparison. For brevity,
we omit the “-full” suffix for post-HF methods.
The exact functional (unlike its inconsistent

approximations) should perform better with in-
creasingbasis set size, sowehaveusedaquintuple-z
all-electron aug-cc-pwCV5Z (20) basis set for all
calculations. It is augmentedwith a set of diffuse
functions (aug-) for accurate description of outer

electron density and a set of tight functions (wC)
for recovering core and core-valence correlation.
To compare the density distributions between

differentmethods, we used the local electron den-
sity (RHO) and two other electron density–based
descriptors often used as inputs forDFT function-
als: gradient normof RHO (GRD) and Laplacian
of RHO (LR). The deviation of a given descriptor
from the CCSD result was calculated as the root
mean square difference (RMSD) between the cor-
responding radial distribution functions. (See
difference plots for Ne and Be in figs. S1 to S3.)
The historical trends are obvious from the

examination of the RMSD values (for RHO in
Fig. 1A; see fig. S4 for all descriptors) over years
and for different DFT theory levels. The early LDA
methods are surpassed by GGAs, and a marked
improvement can be seenwith inclusion of Becke’s
hybrid functional theory, whereas less computa-
tionally intensive nonempirical meta-GGAs show
performance comparable to that of hGGAs. How-
ever, some of the more recent functionals start
producing less accurate electron densities than
LDAs produce.
To put the errors in RHO, GRD, and LR on the

same scale, we divided themby themedianRMSD
error for each descriptor (one global value per
descriptor; see supplementary materials). These
median-normalized absolute errors (henceforth

“normalized errors”) are used in all comparisons
hereafter. A historical overview of relative DFT
performance for electron density descriptors is
shown in Fig. 1B and table S1; here, normalized
errors are averaged over all functionals and
atoms for a given time period. Truhlar’s results
(4) for energetics are also plotted for compari-
son using a similar normalization procedure.

The comparison over all descriptors
confirms the results seen on individual plots:
In recent years, DFT functionals on average are
indeed shifting away from the exact functional.
To study this unexpected change, a comparison
of all three descriptors is necessary. Our set of
atoms and ions is not balanced for representa-
tion of general quantum-chemical calculations.
However, the studied systems can be
considered important edge cases: A func-
tional failing at any of these tasks likely has
internal problems that will affect the method’s
performance for other atoms andmolecules.We
also need to distinguish between methods that
fail for one or two particular atoms and those
that consistently underperform.
Following this logic, the best methods (L1,

Table 1) should have acceptable worst-case be-
havior and also work well on average. We con-
sider these conditions to be met by functionals
residing both (i) in the top quarter of a list
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Table 1. The L1 methods (yielding the best
densities), their rungs, years, and normal-
ized errors (NE).

Method Rung Year Max NE

CCSD Ab initio 0.000
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

MP4sdq Ab initio 0.246
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

MP3 Ab initio 0.967
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

MP2 Ab initio 1.514
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

mPW3PBE hGGA 1998 1.778
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

APFD hGGA 2012 1.813
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B3PW91 hGGA 1993 1.816
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

PBE0 hGGA 1999 1.818
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B98 hGGA 1998 1.826
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

BHHLYP hGGA 1993 1.851
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B97-3 hGGA 2005 1.883
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

mPW1PBE hGGA 1998 1.910
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B3P86 hGGA 1993 1.937
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

O3LYP hGGA 2001 1.947
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

PBE1KCIS hGGA 2005 1.954
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

mPW1PW91 hGGA 1998 1.955
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B97-1 hGGA 1998 1.962
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

HSE06 hGGA 2006 1.982
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

PBEh1PBE hGGA 1998 1.983
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B97-2 hGGA 2001 2.018
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B1B95 hGGA 1996 2.033
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

TPSS mGGA 2003 2.042
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

TPSSh hGGA 2003 2.045
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

TPSSm mGGA 2007 2.077
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

X3LYP hGGA 2005 2.084
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

SCAN mGGA 2015 2.107
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

B3LYP hGGA 1993 2.123
. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

Table 2. The L2 methods (yielding the worst
densities), their rungs, years, and normal-
ized errors (NE).

Method Rung Year Max NE

Xa* LDA 1974 3.777
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SP86 GGA 1986 3.821
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M06-L mGGA 2006 3.974
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SVWN1RPA LDA 1980 3.977
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SPBE GGA 1997 3.978
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SVWN LDA 1980 3.984
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SPZ81 LDA 1981 3.985
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SPW91 GGA 1991 3.989
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M06-2X hGGA 2006 4.027
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SOP GGA 1997 4.182
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SLYP GGA 1988 4.429
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M08-SO hGGA 2008 4.676
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SLATER* LDA 1974 4.864
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M08-HX hGGA 2008 4.880
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

SOGGA11 GGA 2011 4.971
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M06 hGGA 2006 5.420
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M06-HF hGGA 2006 6.125
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

N12 GGA 2012 6.709
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

N12-SX hGGA 2012 6.970
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M05 hGGA 2005 7.652
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

MN12-L mGGA 2012 8.995
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M11 hGGA 2011 10.191
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

MN12-SX hGGA 2012 13.005
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

M11-L mGGA 2011 15.316
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ...

*a = 0.7 for Xa and a = 2/3 for SLATER (see
supplementary materials for references).
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Density Functional Theory

ĤΨ(r1, r2, …, rN) = EΨ(r1, r2, …, rN)

Many-body Schrödinger equation (the “truth”):

Hohenberg-Kohn theorems Mapping from a many-body 
problem to a one-body problem

Ψ(r1, r2, …, rN) → n(r)

E[n] = F[n] + ∫ dr V(r)n(r) = T[n] + U[n] + ∫ dr Vext(r)n(r)

Kohn-Sham formulation
Model the density with non- 
interacting single-electron 
orbitals

n(r) =
N

∑
i=1

|ψi(r) |2E[n] = −
1
2

N

∑
i=1

∇2ψi +
1
2 ∫ drdr′�

n(r)n(r′�)
|r − r′�|

+ Exc[n] + ∫ dr Vext(r)n(r)



Density Functional Theory

n(r) =
N

∑
i=1

|ψi(r) |2E[n] = −
1
2

N

∑
i=1

∇2ψi +
1
2 ∫ drdr′�

n(r)n(r′�)
|r − r′�|

+ ∫ dr Vext(r)n(r) + Exc[n]

Kohn-Sham formulation

Ts[n] = −
1
2

N

∑
i=1

∇2ψi vs . T[n]Kinetic energy of the 
non-interacting particles

EH[n] =
1
2 ∫ drdr′�

n(r)n(r′�)
|r − r′�|

vs . U[n]Hartree-term: Coulombic 
interaction of electrons

Exc[n] =
1
2 ∫ drdr′� n(r)

n(r, r′�)
|r − r′�|

Exchange-correlation functional 
has to model:

• kinetic energy of the many-body 

system

• non-Coulombic interactions
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Figure . Perdew’s metaphorical Jacob’s Ladder, composed of five
rungs corresponding to increasingly sophisticated models for the
unknown exchange-correlation functional of DFT. Since each rung
contains new physical content that is missing in lower rungs,
improved accuracy should be attainable at each higher level.
This is illustrated by reporting the average ranking of the best-
performing functional from each rung out of the total of  func-
tionals assessed later on in the review (which covers functionals
occupying Rungs –).

construction and classification of semi-empirical func-
tionals is discussed in Section 3.1, because the most
widely used functionals in chemistry are of this type.
Some functionals are non-empirical, meaning that all
variables are fixed using known conditions. However,
such conditions are insufficient in number and in power
to completely fix the form of all but the simplest function-
als. Therefore, semi-empirical functionals appear to be
nearly unavoidable for more complex functional designs.
This approach is not uncontroversial, however, due to
the increased potential for overfitting. For clarification
purposes, the number of parameters in common semi-
empirical density functionals are counted in Section 3.2.
With clear reference to semi-empirical functionals, a
recent paper [16] argued that many modern functionals
are ‘sacrificing physical rigor for the flexibility of empir-
ical fitting’ and that as a result ‘DFT is in need of new
strategies for functional development’. An approach that
the present authors have recently developed to avoid the
overfitting problem is to use a combinatorial design strat-
egy [17–20] that can be loosely characterised as ‘survival
of themost transferable’. This idea is specifically discussed
in Section 3.3.

The next major goal is to systematically compare a
full range of leading as well as commonly utilised density
functionals across a large and chemically diverse database
to illustrate the level of performance that can be cur-
rently achieved, relative to benchmark data. The database
that is employed is summarised in Section 4.1 and is

available in the Supplemental Data for those wishing
to utilise it for bench marking purposes. It contains
nearly 5000 data points and is significantly larger than
the databases that are commonly used to assess density
functionals. The data points are drawn from benchmark
quality electronic structure calculations that have been
reported in the literature. Calculations on this database
are performed with 200 density functionals (the full
results are available in the Supplemental Data), and these
results are discussed in Section 5, with particular empha-
sis on a subset of 20 select density functionals (to keep
the scope of the discussionmanageable). The results allow
for a comparative assessment of the strengths (and weak-
nesses) of most common density functionals available in
early 2017, and some overall recommendations ensue.

2. Taxonomy of density functionals

The simplest exchange-correlation functionals depend
only on the electron density and define the first rung of
Jacob’s Ladder, known as the local spin-density approx-
imation (LSDA). These functionals are exact for an
infinite UEG, but are highly inaccurate for molecular
properties, since most real systems have inhomogeneous
density distributions. The LSDA exchange functional has
an exact analytic form that dates back to the days of Slater
and Dirac (Equation (7)). On the other hand, there is no
exact analytic form for the LSDA correlation functional,
and the three most popular parameterisations (VWN5
[21], PZ81 [22], and PW92 [23]) resort to fits to accurate
Quantum Monte Carlo data [24] computed by Ceperley
and Alder in the late 1970s. The combination of Slater–
Dirac (S) exchange and PW92 correlation will be used in
this review to represent the LSDA, and will be referred
to as SPW92. Fortunately, the choice of LSDA correlation
functional has a very small impact on the resulting ener-
getics. For example, across the 4986 data points contained
in the database utilised in this review, the mean absolute
deviation between the SPW92 and SVWN5 interaction
energies is only 0.04 kcal/mol, and themean absolute per-
cent error is only 0.27%. In general, SPW92 predicts bind-
ing energies that are too large, bond lengths that are too
short, and can overbind even the weakest intermolecular
interactions. For example, the SPW92 equilibrium bind-
ing energy (EBE) for the helium dimer is -0.23 kcal/mol,
relative to a reference of -0.02 kcal/mol, while the SPW92
equilibrium bond length (EBL) for the helium dimer is
2.39 Å, relative to a reference of 2.97 Å,

ELSDA
x =

α,β∑

σ

∫
eUEGx,σ dr = −3

2

(
3
4π

)1/3 α,β∑

σ

∫
ρ4/3

σ dr

(7)

from N Mardirossian and M Head Gordon, 
Mol. Phys. 115 2315

• The form of the exchange-correlation 
functional is unknown


• There exist a series of 
approximations: “Jacob’s ladder” to 
chemical accuracy


• Chemical accuracy: thermochemical 
energetics (1 kcal/mol error in 
formation energies), molecular 
geometries


• Errors in DFT can be attributed to the 
limitation of XC functionals

• Self-interaction error (electron self-

repulsion)

• Derivative discontinuity

• Non-local correlation - weak 

interactions

EH[n] =
1
2 ∫ drdr′�

n(r)n(r′�)
|r − r′�|

E(N + δ) = (1 − δ)E(N ) + δE(N + 1)



semi-local 
functionals
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Figure . Perdew’s metaphorical Jacob’s Ladder, composed of five
rungs corresponding to increasingly sophisticated models for the
unknown exchange-correlation functional of DFT. Since each rung
contains new physical content that is missing in lower rungs,
improved accuracy should be attainable at each higher level.
This is illustrated by reporting the average ranking of the best-
performing functional from each rung out of the total of  func-
tionals assessed later on in the review (which covers functionals
occupying Rungs –).

construction and classification of semi-empirical func-
tionals is discussed in Section 3.1, because the most
widely used functionals in chemistry are of this type.
Some functionals are non-empirical, meaning that all
variables are fixed using known conditions. However,
such conditions are insufficient in number and in power
to completely fix the form of all but the simplest function-
als. Therefore, semi-empirical functionals appear to be
nearly unavoidable for more complex functional designs.
This approach is not uncontroversial, however, due to
the increased potential for overfitting. For clarification
purposes, the number of parameters in common semi-
empirical density functionals are counted in Section 3.2.
With clear reference to semi-empirical functionals, a
recent paper [16] argued that many modern functionals
are ‘sacrificing physical rigor for the flexibility of empir-
ical fitting’ and that as a result ‘DFT is in need of new
strategies for functional development’. An approach that
the present authors have recently developed to avoid the
overfitting problem is to use a combinatorial design strat-
egy [17–20] that can be loosely characterised as ‘survival
of themost transferable’. This idea is specifically discussed
in Section 3.3.

The next major goal is to systematically compare a
full range of leading as well as commonly utilised density
functionals across a large and chemically diverse database
to illustrate the level of performance that can be cur-
rently achieved, relative to benchmark data. The database
that is employed is summarised in Section 4.1 and is

available in the Supplemental Data for those wishing
to utilise it for bench marking purposes. It contains
nearly 5000 data points and is significantly larger than
the databases that are commonly used to assess density
functionals. The data points are drawn from benchmark
quality electronic structure calculations that have been
reported in the literature. Calculations on this database
are performed with 200 density functionals (the full
results are available in the Supplemental Data), and these
results are discussed in Section 5, with particular empha-
sis on a subset of 20 select density functionals (to keep
the scope of the discussionmanageable). The results allow
for a comparative assessment of the strengths (and weak-
nesses) of most common density functionals available in
early 2017, and some overall recommendations ensue.

2. Taxonomy of density functionals

The simplest exchange-correlation functionals depend
only on the electron density and define the first rung of
Jacob’s Ladder, known as the local spin-density approx-
imation (LSDA). These functionals are exact for an
infinite UEG, but are highly inaccurate for molecular
properties, since most real systems have inhomogeneous
density distributions. The LSDA exchange functional has
an exact analytic form that dates back to the days of Slater
and Dirac (Equation (7)). On the other hand, there is no
exact analytic form for the LSDA correlation functional,
and the three most popular parameterisations (VWN5
[21], PZ81 [22], and PW92 [23]) resort to fits to accurate
Quantum Monte Carlo data [24] computed by Ceperley
and Alder in the late 1970s. The combination of Slater–
Dirac (S) exchange and PW92 correlation will be used in
this review to represent the LSDA, and will be referred
to as SPW92. Fortunately, the choice of LSDA correlation
functional has a very small impact on the resulting ener-
getics. For example, across the 4986 data points contained
in the database utilised in this review, the mean absolute
deviation between the SPW92 and SVWN5 interaction
energies is only 0.04 kcal/mol, and themean absolute per-
cent error is only 0.27%. In general, SPW92 predicts bind-
ing energies that are too large, bond lengths that are too
short, and can overbind even the weakest intermolecular
interactions. For example, the SPW92 equilibrium bind-
ing energy (EBE) for the helium dimer is -0.23 kcal/mol,
relative to a reference of -0.02 kcal/mol, while the SPW92
equilibrium bond length (EBL) for the helium dimer is
2.39 Å, relative to a reference of 2.97 Å,

ELSDA
x =

α,β∑

σ

∫
eUEGx,σ dr = −3

2

(
3
4π

)1/3 α,β∑

σ

∫
ρ4/3

σ dr

(7)

from N Mardirossian and M Head Gordon, 
Mol. Phys. 115 2315

Exc = ∫ dr εLDA(n(r))n(r)

Exc = ∫ dr εGGA(n(r), ∇n(r))n(r)

Exc = ∫ dr εmGGA(n(r), ∇n(r), ∇2n(r), τ(r))n(r)

(m)GGA + exact exchange

(m)GGA + exact exchange + MP2 correlation

εLDA, εGGA and εmGGA are unknown, need fitting!



Generalities

• All XC functionals are approximations

- DFT (the theory) is exact

- Reports of ‘Failures of DFT’ are actually reports of 

the failure of the XC functional (approximation)

• No functional (so far) is accurate for all properties of 

interest

- No matter what functional is invented, someone 

will always find a case where it fails

• Any functional can be applied to any electronic 

structure problem

- But they have known limitations

- It is still ab initio, but we use experience, 

benchmarks and intuition to decide which ones to 
use



Local Density Approximation

Exc = ∫ dr εLDA(n(r))n(r)

Typical errors:

• Binding energies too large

• Bonds and lattice parameters too small

• Incorrect order of phase stability

• Error in energetics in magnetic materials

TABLE IV. Deviation of enthalpies calculated by DFT methods with experiment.a

Molecule

Deviation ~Expt.-Theory!

SVWN BLYP BP86 BPW91 B3LYP B3P86 B3PW91

G2-1 test set
LiH 3.3 0.1 0.5 24.6 0.4 1.2 23.3
BeH 11.2 7.3 8.5 6.5 8.2 10.0 7.4
CH 9.9 1.8 4.1 20.1 1.7 3.9 0.0
CH2~3B1! 24.1 0.0 8.5 2.8 2.1 10.3 4.2
CH2~1A1! 20.7 20.6 4.2 23.7 0.2 4.9 22.7
CH3 35.2 0.4 10.4 0.3 3.3 13.1 2.9
CH4 46.8 22.3 10.4 23.4 1.6 14.1 0.2
NH 13.7 6.0 8.6 3.8 4.6 7.1 2.5
NH2 29.7 8.0 13.5 4.3 6.5 11.9 3.0
NH3 44.3 4.3 13.3 0.3 3.5 12.4 20.4
OH 19.5 3.4 6.6 2.0 1.8 5.1 0.4
OH2 37.3 0.6 7.8 20.9 21.3 5.8 23.1
FH 22.9 0.4 4.1 20.2 21.6 2.2 22.3
SiH2~1A1! 16.3 0.3 3.6 24.3 2.1 5.1 22.0
SiH2~3B1! 17.3 20.3 6.6 0.5 2.3 8.7 2.9
SiH3 23.3 20.9 6.6 23.7 3.2 10.2 20.6
SiH4 28.1 24.0 4.6 29.5 1.9 10.0 23.1
PH2 23.2 4.9 9.4 0.9 6.0 10.0 2.5
PH3 31.3 1.0 8.2 24.0 3.3 9.7 21.2
SH2 26.1 21.6 5.6 22.1 20.3 6.2 21.0
ClH 15.4 21.6 3.0 20.8 21.0 3.1 20.5
Li2 20.4 23.6 23.6 26.4 23.5 23.6 25.7
LiF 21.6 2.9 2.2 20.8 20.5 20.8 23.8
C2H2 60.4 20.2 11.7 2.2 22.5 9.5 21.5
C2H4 76.6 21.8 16.2 0.4 0.6 18.4 22.5
C2H6 90.7 26.4 18.1 23.9 0.6 24.6 1.5
CN 43.2 8.5 13.4 8.9 22.2 3.3 22.5
HCN 54.4 7.7 15.1 6.8 0.0 7.8 21.8
CO 44.8 3.2 9.0 4.8 23.9 2.1 23.5
HCO 59.7 9.2 17.9 11.1 2.2 11.1 2.9
H2CO 66.5 4.9 16.5 6.2 0.4 12.1 0.4
H3COH 81.8 20.5 17.4 0.4 0.1 17.8 20.3
N2 44.2 10.6 14.4 7.2 21.4 2.7 25.3
H2NNH2 86.9 9.7 26.1 5.6 6.3 22.4 1.5
NO 52.3 13.9 19.3 13.7 3.0 8.4 1.8
O2 56.7 15.3 21.3 17.2 2.0 7.8 2.9
HOOH 71.8 7.5 18.6 6.6 21.8 9.2 23.5
F2 40.4 9.7 12.9 9.6 22.6 0.6 23.1
CO2 93.8 12.6 25.5 19.1 20.2 13.0 3.5
Na2 3.7 1.0 20.2 22.9 0.2 20.8 22.8
Si2 20.6 1.4 6.4 4.2 25.4 4.4 1.8
P2 30.9 4.9 7.6 1.7 21.4 0.7 24.6
S2 36.1 5.7 12.2 9.7 1.2 7.2 4.0
Cl2 26.4 20.3 5.8 4.0 22.9 2.6 0.1
NaCl 8.7 25.7 22.2 24.3 24.6 20.3 23.6
SiO 35.0 2.5 4.6 20.2 25.5 22.8 28.6
SC 34.9 1.2 7.4 4.0 24.9 1.0 23.3
SO 45.0 9.7 14.9 11.3 0.7 5.8 1.3
ClO 41.5 10.5 15.8 12.7 1.6 6.7 2.8
FCl 35.3 5.6 9.7 7.2 21.1 2.9 20.3
Si2H6 54.7 210.2 7.5 214.5 0.2 16.8 24.3
CH3Cl 58.4 23.8 11.8 0.0 20.8 14.3 1.5
H3CSH 69.3 25.2 13.6 22.2 21.2 16.6 0.2
HOCl 50.2 4.5 12.9 6.0 21.5 6.7 21.0
SO2 82.3 7.1 18.8 11.6 210.0 1.7 27.9
G2-2 test set
Non-hydrogen sytems

BF3 87.1 0.2 9.4 3.3 23.9 7.2 22.8
BCl3 68.0 28.6 9.1 5.8 26.3 10.8 4.1
AlF3 60.6 27.3 22.6 28.3 211.9 24.3 214.0
AlCl3 44.9 215.4 21.5 24.9 210.2 3.8 22.9
CF4 135.1 3.6 24.1 14.4 24.5 16.1 2.3
CCl4 99.4 212.2 15.1 8.2 214.0 11.3 1.0

1073Curtiss et al.: Computation of enthalpies of formation
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LDA parameterisations

Exc = ∫ dr εLDA(n(r))n(r)

XC_FUNCTIONAL : LDA

• Exchange: Slater exchange

• Correlation: parameterisations based on 

accurate calculations of the 
Homogenous Electron Gas

• Vosko-Wilk-Nusair 5 (VWN5): Can. J. 

Phys. 58, 1200 (1980) 

• Perdew-Zunger: PRB 23, 5048 (1981)

• Perdew-Wang: PRB 45, 13244 (1992) 

• VWN3: Can. J. Phys. 58, 1200 (1980)  

εLDA,x ∝ n1/3



Generalised Gradient Approximations

Exc = ∫ dr εGGA(n(r), ∇n(r))n(r)

• More flexible functional form

• Semi-local: information about nearby regions via 

the gradient

• Not very successful before 1996 (PBE: Generalised 

Gradient Approximation Made Simple)

• Theoretical limits and constraints explicitly built in

• Modifies LDA exchange and correlations using 

“enhancement factors”



Generalised Gradient Approximations

J. Sun et al, PRB 84, 035117 

Lattice constants (Å) Binding energies (eV / atom)



GGA parameterisations

XC_FUNCTIONAL : PW91
• J. P. Perdew and Y. Wang, PRB 45 13244 (1992)  

XC_FUNCTIONAL : PBE
• J. P. Perdew, K. Burke and M Ernzerhof, PRL 77 3865 

(1996) 


XC_FUNCTIONAL : RPBE
• B. Hammer, L. B. Hansen and J. K. Norskov, PRB 59 7413 

(1999) 


XC_FUNCTIONAL : WC
• Z. Wu and R. E. Cohen, PRB 73, 235116 (2006)  

Exc = ∫ dr εGGA(n(r), ∇n(r))n(r)



Meta-Generalised Gradient Approximations

• Even more flexible functional form

• Still semi-local

• Not very successful before 2015 (SCAN: Strongly 

Constrained and Appropriately Normed functional)

• More theoretical limits, constraints and accurate 

cases explicitly built in

• Kinetic energy density: solve the Generalised Kohn-

Sham equations (XC potential not multiplicative)

• Improved energetics and structural properties

• Band gaps closer to experimental ones

Exc = ∫ dr εmGGA(n(r), ∇n(r), ∇2n(r), τ(r))n(r)

τ(r) =
1
2

N

∑
i=1

|∇ψ(r) |2 Vxc(r) =
δExc

δn
= VGGA(r) + ̂Vτ(r)



mGGA parameterisations

• Modified Becke-Johnson (Tran-Blaha) potential: 
Tran and Blaha, PRL 102, 226401 (2009) 
- potential only mGGA, no total energy, no forces etc.

- improves band gaps


• TPSS mGGA: Tao, Perdew, Staroverov, Scuseria, 
PRL 91, 146401 (2003)


XC_FUNCTIONAL : rSCAN
• J. Sun, A. Ruzsinszky, J. P. Perdew 

PRL 115 036402 (2015)

- functional form obeys limits by construction

- bonding situation determined based on KED

- limiting cases are interpolated

Exc = ∫ dr εmGGA(n(r), ∇n(r), ∇2n(r), τ(r))n(r) τ(r) =
1
2

N

∑
i=1

|∇ψ(r) |2

VmGGA(r) =
δExc

δn
= VGGA(r) + ̂Vτ(r)VmBJ(r) = V(n(r), |∇n(r) | , τ(r))

they showed that these two potentials are quasi-identical
for atoms [20]. In Eq. (1), cwas chosen to depend linearly
on the square root of the average of jr!j=!:

c¼ "þ #
!

1

Vcell

Z
cell

jr!ðr0Þj
!ðr0Þ d3r0

"
1=2

; (3)

where " and # are two free parameters and Vcell is the unit
cell volume. Minimization of the mean absolute relative
error for the band gap of the solids listed in Table I leads to
" ¼ %0:012 (dimensionless) and # ¼ 1:023 bohr1=2.
Equation (1) was chosen such that the LDA exchange
potential vLDA

x;$ ¼ %ð3=%Þ1=3ð2!$Þ1=3 is approximately re-
covered (for any value ofc) for a constant electron density.
Indeed, vBR

x;$ ’ vSlater
x;$ , which reduces to ð3=2ÞvLDA

x;$ for a
constant !, while the second term of Eq. (1) [without ð3c%
2Þ] reduces to %ð1=2ÞvLDA

x;$ since t$ ¼ ð3=20Þð3%2Þ2=3 &
ð2!$Þ5=3 for a constant !. Forc¼ 1 the original BJ poten-
tial is recovered [20]. We mention that it was shown in
Ref. [28] that due to the second term in Eq. (1), the BJ
potential reproduces very well the step structure and de-
rivative discontinuity of the exact exchange potential,

which is an important result since only semilocal quantities
are used. The BJ potential was also studied in Ref. [29].
Correlation effects were taken into account by adding a
LDA correlation potential [2] to vMBJ

x;$ (MBJLDA); how-
ever, in Ref. [19] we showed that adding LDA correlation
to the BJ potential has a relatively small effect.
Varying cin Eq. (1), we observed that for all studied

solids the band gap increases monotonically with respect to
c, and since the values obtained withc¼ 1 are for all cases
too small with respect to experiment [19], a larger value for
cleads to better agreement with experiment. More specifi-
cally, for solids with small band gaps, copt (the value of c
which leads to a perfect agreement with experiment) lies
within the range 1.1–1.3, while for large band gaps, copt is
larger (1.4–1.7). Therefore, our goal was to find a property
of the systems which could uniquely define a value for c
close to copt. Such a property could, e.g., be the dielectric

constant, but finally we got inspired by Ref. [30] where it is
proposed to use the expression ! ¼ &jr!j=! for the
parameter ! which defines the separation between short-
and long-range exchange in the screened hybrid functional
HSE [4]. Among the different possibilities we have tried,
Eq. (3) is the one which leads to the most satisfying results.
Note that since vBR

x;$ ’ vSlater
x;$ and vSlater

x;$ is an average of the
Hartree-Fock potential [22], Eq. (1) can be seen as a kind
of ‘‘hybrid’’ potential whose amount of ‘‘exact exchange’’
is given by c.
Table I and Fig. 1 show the results obtained with the

LDA and MBJLDA potentials for the fundamental band
gap of 23 solids. We used the WIEN2K package [31] which
is based on the full-potential (linearized) augmented plane-
wave and local orbitals [FP-ðLÞAPWþ lo] method (see
Ref. [32] and references therein). For comparison pur-

TABLE I. Theoretical and experimental fundamental band
gaps (in eV). The structure is indicated in parenthesis. For
comparison, results from the literature which were obtained
by other methods are also shown (HSE03, HSE06, G0W0, and
GW). The experimental values were taken from
Refs. [4,7,10,14,18,23–26].

Solid LDA MBJLDA HSE G0W0 GW Expt.

Ne (A1) 11.42 22.72 19.59e 22.1g 21.70
Ar (A1) 8.16 13.91 10.34a 13.28e 14.9g 14.20
Kr (A1) 6.76 10.83 11.6
Xe (A1) 5.78 8.52 9.8
C (A4) 4.11 4.93 5.49b 5.50e 6.18g 5.48
Si (A4) 0.47 1.17 1.28b 1.12e 1.41g 1.17
Ge (A4) 0.00 0.85 0.83b 0.66f 0.95g 0.74
LiF (B1) 8.94 12.94 13.27e 15.9g 14.20
LiCl (B1) 6.06 8.64 9.4
MgO (B1) 4.70 7.17 6.67b 7.25e 9.16g 7.83
ScN (B1) %0:14 0.90 0.95f 1.4h ' 0:9
MnO (B1) 0.76 2.95 2.8c 3.5i 3:9 ( 0:4
FeO (B1) %0:35 1.82 2.2c 2.4
NiO (B1) 0.42 4.16 4.2c 1.1f 4.8i 4.0, 4.3
SiC (B3) 1.35 2.28 2.40b 2.27e 2.88g 2.40
BN (B3) 4.39 5.85 5.99b 6.10e 7.14g ' 6:25
GaN (B3) 1.63 2.81 3.14b 2.80e 3.82g 3.20
GaAs (B3) 0.30 1.64 1.12b 1.30e 1.85g 1.52
AlP (B3) 1.46 2.32 2.51b 2.44e 2.90g 2.45
ZnS (B3) 1.84 3.66 3.49b 3.29e 4.15g 3.91
CdS (B3) 0.86 2.66 2.25b 2.06e 2.87g 2.42
AlN (B4) 4.17 5.55 5.81b 5.83f 6.28
ZnO (B4) 0.75 2.68 2.49d 2.51f 3.8g 3.44

aHSE06, erratum of Ref. [10].
bHSE03, supplementary material of Ref. [4].
cHSE03 [26]. dHSE06 [27]. eReference [17]. fReference [15].
gReference [18]. hReference [16]. iReference [14].
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FIG. 1 (color online). Theoretical versus experimental band
gaps. The values are given in Table I (Ne is omitted).
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appropriate norms, where the exact exchange-correlation hole is
sufficiently localized (for example, the hydrogen atom), as guidance
across the constraints. Although SCAN uses no bonded information
in its construction, the power of α together with the strong con-
straints and appropriate norms make it accurate for diversely
bonded materials, with genuine non-empirical predictive power.

Due to the semilocal feature in the computation, meta-GGAs are
much more efficient than hybrid GGAs, which are the current
beyond-GGA choice. By mixing GGAs with non-local exact
exchange, hybrid GGAs (for example, the PBE0 hybrid GGA20,
where 25% of the exact exchange energy is mixed with 75% of PBE
GGA exchange) can further improve the description of covalent,
ionic and hydrogen bonds. However, hybrid GGAs still fail to
describe van der Waals interactions. PBE0 is especially hard to
evaluate for metallic systems, although some range-separated versions
(without long-range exact exchange) are easier. The computational
cost of a hybrid functional can be 10 to 100 times21 that of a semilocal
functional in standard plane-wave codes. Another problem with
hybrids is that a universal exact-exchange mixing parameter is not
determined by any exact condition, nor is the range-separation
parameter in a range-separated hybrid.

The SCAN meta-GGA has been shown15 to be superior to the
PBE GGA for some standard molecular test sets and a small collec-
tion of solids. The mean absolute errors for SCAN15 are smaller than
those for PBE by a factor of about 4 for the atomization energies of
the 223 G3 molecules, a factor of 3 for the binding energies of the
S22 set of weakly bound dimers of small molecules, and a factor
of 4 for the LC20 set of lattice constants for solids. SCAN is also
more accurate, by about 30%, in predicting the BH76 energy barriers
to chemical reactions. Future studies will also show that the mean
absolute errors of SCAN for the heats of formation of 94 binary
solids are smaller than those of PBE by about 30%, or a factor
of 3, for compounds with or without transition-metal elements,
respectively. However, this Article shows that SCAN has an unex-
pected and striking performance for diversely bonded systems,
many of which were believed to be out of reach of semilocal
functionals, and is comparable to or even more accurate than a
computationally more expensive hybrid GGA.

Results and discussion
Van der Waals interactions in ice phases and water hexamer
clusters. It was once believed that non-empirical semilocal
functionals and their hybrids were incapable of describing the van
der Waals bonds arising from intermediate-range van der Waals
interactions. Van der Waals interactions are typically weak, but
still important (for example, for the structures of a hydrogen-
bonded network like ice). In the binding energy difference per
H2O between one ice phase and another, the van der Waals
attraction becomes more important compared with the hydrogen-
bonding energies when the density of water molecules increases22.
Figure 1a shows that both the PBE GGA and PBE0 hybrid
significantly destabilize high-pressure phases relative to Ih (the
stable phase of ice at ambient pressure), and the addition of the
Tkatchenko–Scheffler23 van der Waals correction (vdW_TS)
improves the energy differences dramatically compared to the
experimental results or the highly accurate yet expensive diffusion
Monte Carlo (DMC) predictions22,24. Interestingly, and surprisingly,
the SCAN meta-GGA15 yields energy differences between all the
different ice phases studied here with an accuracy comparable to
that of PBE0+vdW_TS and considerably improves upon the
predictions of PBE0+vdW_TS for the energy difference between
ice Ih and the high-density phase VIII. Moreover, SCAN predicts
that ice II is 3 meV per H2O more stable than ice IX, in
agreement with experiments, while this ordering is reversed by
both PBE+vdW_TS and PBE0+vdW_TS. This might be due to
the many-body nature of the van der Waals interaction, which is

missed by the pairwise vdW_TS correction but captured by
SCAN. The lower panel of Fig. 1a also shows that SCAN predicts
the volume changes between ice phases in near-quantitative
agreement with the experimental results and thus with greater
accuracy than all other functionals considered here.

In addition to ice in its different phases, water clusters also
present a challenge for semilocal and hybrid density functionals.
Water hexamer clusters are the most notorious examples25. The
water hexamer has four low-energy configurations: prism, cage,
book and cyclic. High-level wavefunction methods25 (for example,
the coupled cluster singles and doubles with perturbative triples,
CCSD(T)) all predict the prism configuration to be the most
stable, followed by the cage, book and cyclic structures. However,
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Figure 1 | SCAN captures the intermediate-range, many-body van
der Waals interactions necessary for a quantitative description of
various ices and gas-phase water hexamers. a, The relative sublimation
energy ΔE0 and equilibrium volume change ΔV0 per water molecule of
seven hydrogen-ordered ice phases with respect to the ground-state ice Ih
illustrate that SCAN is the only functional tested that predicts the relative
stability of ice phases in quantitative agreement with experimental results.
The sublimation energy (E0) is the energy needed to break an ice into
isolated water molecules. b, The relative binding energy per water molecule
of four low-energy water hexamers similarly illustrates that SCAN is the only
semi-local density functional approximation that predicts the known
energetic ordering of these clusters, evidenced by the agreement between
SCAN and CCSD(T). The zero-point energy effects have been removed from
the experimental results46,47 for ice. Data points (and error bars) computed
by methods other than SCAN are from refs 24 and 25 for the ice phases and
water hexamers, respectively. Lines are guides to the eye.
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Hybrid functionals

• Exact exchange: corresponds to the exchange 
energy of non-interacting one-body orbitals - does 
not account for all exchange energy


• Hybrid functionals use a mix of GGA exchange and 
exact exchange, as well as GGA correlation


• Non-local potential: a lot more expensive in plane-
waves than semi-local functionals

Ex,exact = −
1
2 ∑

i, j
∫ drdr′�

ψ*i (r)ψi(r′�)ψ*j (r)ψj(r′�)
|r − r′�|

Vx,exact(r, r′�) = −
1
2 ∑

j

ψ*j (r)ψj(r′�)
|r − r′�|

Ex = (1 − α)Ex,GGA + αEx,exact



Hybrid functional parameterisations

In CASTEP:

• Worse scaling with system size - more expensive

• Not all functionality present


XC_FUNCTIONAL : B3LYP
• P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, JPC 98 

11623 (1994)  

XC_FUNCTIONAL : PBE0
• C. Adamo and V. Barone, JCP 110 6158 (1999)  

XC_FUNCTIONAL : HSE03
• J. Heyd, G. E. Scuseria and M. Ernzerhof, JCP 118 8207 (2003) 


XC_FUNCTIONAL : HSE06
• A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, JCP 125 

224106 (2006)

range-separated 
hybrids (more 
efficient for metals)



Double hybrid functionals

• Hybrid exchange and

• In a similar spirit to hybrids, 

correlation is a mix between GGA 
correlation and MP2 correlation


• Weak interactions (van der Waals) 
better described


• Not available in CASTEP

Figure 7. Water dimer dissociation (left) computed with the aug-cc-pVTZ basis set. Reference CCSD(T)/CBS energies are taken from the S66×8
repository.51 Example of hydrogen binding energies (right) computed at the def2-QZVP level on an uracil dimer.

Figure 8. Benzene-ethene dissociation (left) computed with the aug-cc-pVTZ basis set. Reference CCSD(T)/CBS energies are taken from the
S66×8 repository.51 Example of π-stacking energies (right) computed at the def2-QZVP level on a pyrazine dimer.

Figure 9. Examples of weak interaction energy computed on two inorganic transition metal complexes: the dimer of hydrogen telluride (left) and
plumbane−hydrogen chloride interaction (right). The def2-QZVP basis set was used.
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DFT+U

• Self-interaction error in DFT

• On-site repulsion not treated properly

• Correlation effects not modelled 

accurately especially in open-shell 
systems


• Electrons in LDA and GGA tend to be 
more delocalised than they should be


• meta-GGAs (SCAN) appears to 
improve the description of strongly 
correlated systems without U 

%block hubbard_u  
Ni d:5.0  
%endblock hubbard_u  

Strongly correlated systems: the LDA + U method 783

Figure 7. The total and partial densities of states of NiO [11].

method are seen most clearly for the transition metal compounds, where 3d electrons,
while remaining localized, hybridize quite strongly with other orbitals. Late-transition-
metal oxides, for which LSDA results strongly underestimate the energy gap and magnetic
moment values (or even give qualitatively wrong metallic ground states for the insulators
CoO and CaCuO2), are well described by the LDA+ U method [11] (see table 1).

In figures 6–8 the partial densities of states (DOSs) of CaCuO2, NiO and CoO are
shown. The DOSs of FeO and MnO are similar to that of CoO, except for the growing
number of unoccupied t2g bands. First, focusing on the unoccupied density of states of NiO
(figure 7), one can see that all of the weight is concentrated in the narrow eg# peak, in
agreement with experimentally observed d8 �! d9 peak [30]. In CoO (figure 8) the 3dxy#
orbital is emptied too, and this band is located at ⇠0.5 eV lower energy. This crystal-field
splitting of the unoccupied d band is also found experimentally [31]. Comparing now the
unoccupied DOS of CoO or NiO with that of CaCuO2, we found that the width of the
3dx2�y2# band of the cuprate is larger by a factor of 4–5 compared to that of the rock-salt
oxides. As a result, a sharp d9 �! d10 peak is missing, which is in striking agreement with
experiment [32]. This is obviously related to the formation of a broad Cu 3dx2�y2�O 2p
band caused by the relatively small in-plane Cu–O bond length and a Cu–O–Cu bond angle
of 180�. In CuO, on the other hand, the bond angles are much smaller (between 96� and
146�) so two neighbouring Cu 3dx2�y2 orbitals hardly couple via the same (2px or 2py)
O orbital. One expects thus a strong decrease of the band width in going from CaCuO2
to CuO [33], despite the similarity of the two systems on a local level [34]. In figure 9,

PRB 44, 943 

using the LSDA method !Fig. 3", consistent with that calcu-
lated previously by the LSDA-based orthogonalized linear
combination of atomic orbitals method,18 shows clearly that
two conduction bands have dropped and cross the Fermi

level, which is set at 0 eV. Therefore no energy gap appears,
predicting a metallic or semimetallic ground state for CuO.
On the other hand, the band structure by the LSDA+U
method !Fig. 4" shows no conduction band crossing by the
Fermi level. The two conduction bands crossed by the Fermi
level in the LSDA calculations are pushed upward from the
Fermi level by the introduction of the Hubbard U. As a con-
sequence, an indirect energy gap of 1.0 eV appears and CuO
is predicted to be a semiconductor in its ground state, which
is confirmed by several experiments.5,8,9 From the analysis of
the wave functions, the top valance band and the two bottom
conduction bands are attributed to the 3d orbitals of Cu at-
oms. The LSDA+U method improved the treatment to the
localized 3dstates from Cu, leading to the correct electronic
structure of CuO.

To have a picture about the carrier mobility in CuO, we
also calculated the effective masses in CuO using the
LSDA+U method. The minimum of the conduction band is
at point D! 1

2 ,0 , 1
2

" in Fig. 4. The longitudinal direction is
along D!, while the transverse effective masses were calcu-
lated in the plane perpendicular to it. The calculated longitu-
dinal and transverse electron effective masses are 0.78m0 and
3.52m0, respectively, where m0 is the rest mass of a free
electron. The average hole effective mass is 1.87m0. Com-
pared with silicon, whose effective masses are 0.26m0 and
0.39m0 for electrons38 and holes,39 respectively, the carrier
mobilities in CuO are much smaller. As stated earlier, since
both the top of valance band and the bottom of conduction

FIG. 2. Comparison of density of states of CuO from LSDA
!dotted lines" and LSDA+U !solid lines" calculations. The positive
and negative DOS refers to spin up and spin down, respectively.
The energy zero point is chosen at Fermi level.

FIG. 3. Band structure of CuO from LSDA calculations. The
Fermi level !dashed line" is set at 0 eV. The notations of the high-
symmetry points of the first Brillouin zone follow Ref. 37.

FIG. 4. Band structure of CuO from LSDA+U calculations. The
Fermi level !dashed line" is set at 0 eV. The notations of the high-
symmetry points of the first Brillouin zone follow Ref. 37.

LSDA+U STUDY OF CUPRIC OXIDE: ELECTRONIC¼ PHYSICAL REVIEW B 73, 235206 !2006"

235206-3

CuO

PRB 73, 235206 
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Dispersion corrections

• Not all correlation effects accounted 
for in DFT (particularly non-local 
correlation)


• van der Waals interactions significant 
in a number of systems:

- Molecular crystals

- Layered materials

- Even oxides!


• Dispersion correction:

- Pairwise schemes

- Three-body interactions

- TS - pairwise parameters depend on 

electronic structure

- many-body dispersion

sedc_apply : true

sedc_scheme : OBS
• PRB 73, 205101 (2006)

sedc_scheme : G06
• (D2) J. Comput. Chem. 27, 1787 (2006) 

sedc_scheme : JCHS
• J. Comput. Chem. 28, 555 (2007)

sedc_scheme : TS
• PRL 102, 073005 (2009)

sedc_scheme : MBD*
• J. Chem. Phys. 140, 18A508 (2014)

18A508-10 Ambrosetti et al. J. Chem. Phys. 140, 18A508 (2014)

FIG. 3. MAE (upper panel in kcal/mol) and MARE (lower panel in %) for
the S66, S12L, and X23 databases computed with MBD@rsSCS and TS com-
bined with both the PBE and PBE0 functionals.

The X23 database is comprised of 11 systems containing
predominately dispersion interactions between molecules, 9
hydrogen-bonded systems, and 3 systems that feature both
types of interactions. The experimental lattice energies were
determined using experimental sublimation enthalpies with
vibrational contributions from phonon calculations and exper-
imental heat-capacity data, with an estimated uncertainty of
0.5–0.75 kcal/mol.50

The MAEs and MAREs for various methods are pre-
sented in Table V. As noted previously, the pairwise TS
method performs poorly for molecular crystals, with a
MAE of 2.39 kcal/mol when combined with PBE0.15, 50

Just as for supramolecular systems, TS overestimates co-
hesion due to the absence of long-range screening contri-
butions. DFT+MBD@SCS yields substantial improvements
with PBE0+MBD@SCS having an MAE of 0.94 kcal/mol,50

below the coveted chemical accuracy standard of 1 kcal/mol.
Range-separation of the electrodynamic screening further im-
proves the performance, with PBE0+MBD@rsSCS reaching

TABLE V. MARE (in %) and MAE (in kcal/mol) for the X23 database
calculated with different vdW-inclusive DFT schemes. The PBE+TS and
PBE0+TS values are taken from Ref. 15.

Method MARE (%) MAE (kcal/mol)

PBE+MBD@rsSCS 6.6 1.18
PBE0+MBD@rsSCS 4.8 0.84
PBE+MBD@TS 10.0 1.76
PBE0+MBD@TS 7.7 1.34
PBE+TS 17.2 3.20
PBE0+TS 12.9 2.39

a MAE of 0.84 kcal/mol. As for small molecules, including
some exact exchange in the underlying density functional im-
proves performance by a significant amount, although the role
of many-body vdW contributions is much larger. This may in
part be due to a better balance between the modeling of the
crystal and the isolated molecules. Delocalization is inherent
in the solid state, in particular for hydrogen-bonded systems,
so that self-interaction errors are less of an issue. Using the
hybrid functional therefore improves the description of the
isolated molecules. In addition, as discussed previously,12 the
“contact area” of these systems is reduced, i.e., there is only
limited inter-fragment charge overlap, giving a rather clean
separation between short- and long-range effects.

MBD@TS performs markedly better than TS for X23,
as was the case for the S12L. However, we can clearly see
the importance of the short-range screening that is present
in MBD@rsSCS, with the PBE0+MBD@TS MAE being
0.50 kcal/mol larger than PBE0+MBD@rsSCS. In the ab-
sence of this screening, MBD@TS overbinds the crystals.
This is particularly visible in the highly polarizable adaman-
tane crystal, where MBD@TS predicts a cohesive energy
4.5 kcal/mol larger than that of MBD@rsSCS. At short-
range, i.e., within molecules and close fragments, screening
of the system can result in strong polarization along chemical
bonds,15 increasing the strength of the long-range coupling.
This in turn can lead to stronger depolarization and therefore
an overall greater reduction in relative binding energies.

For 21 of the X23 systems a comparison with
pairwise methods can be made using the C21 data
of Otero-de-Roza and Johnson.13, 50 For this dataset,
PBE0+MBD@rsSCS achieves an MAE of 0.76 kcal/mol
while PBE+MBD@rsSCS has an MAE of 1.07 kcal/mol. In
contrast, both B86b+XDM7, 60 and the vdW-DF2 functional58

give larger MAEs of 1.13 kcal/mol and 1.53 kcal/mol, re-
spectively. PBE+MBD@rsSCS can be improved to yield
chemical accuracy by inclusion of exact exchange (as in
PBE0+MBD@rsSCS). However, systematically improving
XDM or vdW-DF2 is difficult. B86a+XDM has a negative
mean error of −0.83 kcal/mol, underbinding the crystals. Cor-
rectly adding exchange contributions or many-body disper-
sion effects would in fact worsen its performance, as their
effect is to reduce lattice energies even further. Indeed, it
has already been seen that adding three-body dispersion en-
ergy contributions yields a slightly poorer MAE.25 Adding
higher-order contributions to vdW-DF2, in the form of triple
or higher non-local integrals, would raise its computational

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
141.14.162.129 On: Wed, 19 Feb 2014 15:23:27
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Dispersion corrections

Role of Dispersion Interactions in the Polymorphism and
Entropic Stabilization of the Aspirin Crystal

Anthony M. Reilly* and Alexandre Tkatchenko†
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Aspirin has been used and studied for over a century but has only recently been shown to have an
additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are
degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of
the less abundant form II. Here, first-principles calculations provide an alternative explanation based on
free-energy differences at room temperature. The explicit consideration of many-body van der Waals
interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a
subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a
systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of
form II as making it metastable.

DOI: 10.1103/PhysRevLett.113.055701 PACS numbers: 81.30.Hd, 61.50.Lt, 62.20.−x, 71.15.−m

The ability of molecules to yield multiple solid forms, or
polymorphs, has significance for diverse applications
ranging from drug design and food chemistry to nonlinear
optics and hydrogen storage [1]. For example, different
solid forms of an active pharmaceutical ingredient can
affect its bioavailability and formulation, sometimes in
unpredictable ways [2,3]. The computational modeling of
polymorphism has seen many advances in recent years, in
both generation of reasonable structures [4,5] and optimi-
zation and accurate ranking of these polymorphs [6,7].
Even when polymorphs can be predicted for a given
molecule, theory and experiment often struggle to under-
stand why a given polymorph is stable under certain
thermodynamic conditions [8].
Aspirin (acetylsalicylic acid) is a widely used analgesic

that clearly illustrates many of the challenges of under-
standing polymorphism. A second less common form of
aspirin has only been predicted [9] and characterized [10,11]
in recent years. State-of-the-art quantum-chemical calcula-
tions predict very small energy differences of the order of
!0.1 kJ=mol between the two polymorphs [12,13], making
both solid forms essentially degenerate in terms of lattice
energy. This raises the question of why the second form took
so long to be discovered and why the first form appears to be
more abundant. A possible explanation is that kinetic effects,
such as slow growth of form II, may play a role, and, indeed,
growth of form II can promoted by certain conditions
[10,11]. Nanoindentation experiments suggest that, despite
their similar structures (Fig. 1), the two polymorphs have

markedly different mechanical properties, with form II
appearing to be softer and potentially susceptible to shear
instability [14]. However, computational studies of their
elastic properties have also given conflicting results [9,15].
To accentuate this controversy, form II has been observed to
revert to form I slowly at room temperature and upon
grinding [14], suggesting that form I is thermodynamically
more stable. However, no viable mechanism for its thermo-
dynamic stability has yet been established.
Recently, a number of studies have highlighted the

importance of many-body van der Waals (vdW) interactions
in condensed molecular systems, especially in the context of
vdW-inclusive density-functional theory (DFT) [7,16–18].
The many-body dispersion (MBD) approach [19,20] has
been shown to systematically improve the accuracy of DFT

FIG. 1 (color online). (Top) The unit-cell structures of form-I
(left) and form-II (right) aspirin (acetylsalicylic acid). The b
direction is perpendicular to a and c. (Bottom) View of form-I
(left) and form-II (right) aspirin showing the different interlayer
hydrogen-bonding motifs.
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in predicting absolute and relative stabilities of molecular
crystals [7,17,20,21]. In this contribution, we apply the
DFTþMBD method to aspirin, showing that the role of
many-body vdW interactions goes beyond lattice stabilities
and energies to affect vibrational and elastic response
properties, revealing an entropically driven mechanism
behind the relative stability of form-I aspirin.
We begin by putting our approach in the context of other

calculations of the relative stabilities of aspirin. These
calculations have typically considered the energy differences
between the computationally optimized, 0 K lattice of the
two polymorphs. Table I gives the MBD lattice energy
difference, when coupled with the nonempirical Perdew-
Burke-Ernzerhof (PBE) density functional [22] (see the
Supplemental Material [23] for further details). For com-
parison, the value with the pairwise Tkatchenko-Scheffler
(TS) scheme for vdW interactions [28] is also reported. Both
the MBD and TS results confirm the picture of nearly
degenerate polymorphs in terms of lattice energy, already
firmly established by quantum-chemical calculations [12].
The same conclusion holds when the more accurate hybrid
PBE0 functional is used [29]. PBE0þMBD calculations
give very similar results to PBEþMBD, differing by
only 0.1 kJ=mol.
While the two aspirin structures are degenerate in terms

of lattice energies, at finite temperature free-energy
differences dictate the thermodynamic stability and driving
force for the formation of a polymorph. At the moderate
temperatures of interest in this work, the free energy of a
molecular crystal can be determined from its lattice
dynamics in the harmonic approximation [30]

FðTÞ ¼ EelecþEZPEþkBT
Z

gðωÞln
!
1−exp

"
ℏω
kBT

#$
; ð1Þ

where the integral goes over all frequencies ω, gðωÞ is the
phonon density of states, Eelec is the DFT total energy, and
EZPE is the zero-point energy. Here we report the PBEþ TS
and PBEþMBD free-energy differences at room temper-
ature (298 K) in Table I, along with ZPE corrected total-
energy differences at 0 K. The ZPE contributions are
minimal, amounting to 0.2–0.3 kJ=mol, in line with

previous calculations (0.4 kJ=mol) [12]. However, for the
free-energy differences at room temperature, the pairwise
and many-body descriptions of vdW interactions give
qualitatively different pictures. PBEþ TS predicts a slightly
more stable form II, with a minor vibrational contribution of
0.5 kJ=mol. In contrast, PBEþMBD predicts form I to be
more stable by the more substantial amount of 2.56 kJ=mol.
We have noted previously that many-body vdW inter-

actions can have a substantial impact on absolute lattice
energies [21], including that of form-I aspirin [17]. It is
demonstrated here that many-body vdW interactions can
also substantially affect vibrational properties. The majority
of the PBEþMBD free-energy difference arises from
thermal vibrational contributions. To understand this, we
plot the phonon density of states of aspirin forms I and II,
with the pairwise and many-body description of vdW
interactions in Fig. 2. Many-body vdW interactions lead
to an appearance of low-frequency phonon modes near
30 cm−1 (four phonon modes per unit cell from 28 to
34 cm−1) and additional shifting of phonon frequencies of
form I to lower values below 200 cm−1. Some shifting of the
form-II frequencies occurs but to a much lesser extent,

FIG. 2 (color online). Phonon density of states for forms I (top)
and II (bottom) of aspirin with the DFT-PBE functional in
combination with a pairwise (TS) and many-body (MBD)
description of vdW interactions. Gaussian broadening of
10 cm−1 is used in this plot. The shaded region highlights the
difference in low-frequency phonon modes.

TABLE I. The relative total-energy differences (ΔEI→II ¼
EII − EI) between the two forms of aspirin as determined by
using PBEþ TS and PBEþMBD, together with zero-point
energy (ZPE) corrected differences and free-energy differences.

ΔEI→II=kJ=mol

PBEþ TS −0.18
PBEþ TSþ ZPE −0.42
PBEþ TSþ Fvibð298 KÞ −0.68
PBEþMBD 0.04
PBEþMBDþ ZPE 0.35
PBEþMBDþ Fvibð298 KÞ 2.56
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Two forms of aspirin
supramolecular systems requires some model of collective and
many-body vdW interactions.

4.3 Collective van der Waals effects in molecular solids

Molecular solids represent a diverse and challenging class of
systems for applying different descriptions of vdW interactions
to different properties, ranging from lattice energy to elastic
properties and phonons.

4.3.1 Benzene crystal. Benzene is naturally one of the most
widely studied molecular crystals. Recently, several groups have
studied the lattice energy of benzene and have found it
important to include many-body contributions.47,81–84 One
approach is to expand the lattice energy as a mean-eld
contribution (e.g. a HF energy) plus a summation of contribu-
tions from dimers, trimers etc. within the lattice, calculated at a
high level of theory. As MP2 cannot capture three-body disper-
sion contributions, Kennedy et al. have been able to estimated
the three-body dispersion contribution by comparing MP2
energies for over 350 trimers from the crystal with CCSD(T)
energies and using the ATM expression for further more-distant
trimers.81 The contribution is of the order of +3.2 kJ mol!1 (i.e.
reducing the magnitude of the lattice energy), around 6% of the
lattice energy, but smaller than previous estimates based solely
on the ATM expression with different C9 coefficients, which
range from 3.8–7.0 kJ mol!1.47,81,82

Yang et al. have used a similar expansion (including dimers,
trimers, tetramers and additional correlation contributions) to
estimate the benzene lattice energy as !55.9(9) kJ mol!1, which
compares very well with an experimental estimate of !55.3(22)
kJ mol!1 obtained from sublimation enthalpies and theoretical
zero-point contributions.84 This value involved not only a
signicant three-body contribution to the lattice energy but a
four-body one as well. It is worth noting that “body” is a
complete benzene molecule in these approaches, and thus
these many-body contributions are not directly comparable to
the three-atom contributions of the ATM expression.

The MBD method has also been applied to benzene, where
the difference between the TS pairwise lattice energy and the
MBD lattice energy is around +11 kJ mol!1 when both are
coupled to either the PBE or PBE0 (ref. 85) density functionals,
reducing the lattice energy to !55.0 kJ mol!1 for PBE + MBD or
!51.2 kJ mol!1 with PBE0 + MBD.41 The pairwise TS method,
which is accurate to 1.5 kJ mol!1 for small-molecule binding
energies and 5.5% for C6 coefficients,36,53 signicantly over-
estimates the lattice energy in the absence of collective
screening and many-body energy contributions. The role of
these effects is even more pronounced when considering larger
oligoacenes such as naphthalene and anthracene.41,70

4.3.2 X23 dataset. Recent efforts to develop benchmark
dataset such as the C21 (ref. 19) and the X23 (ref. 41 and 53) have
permitted a broader assessment of absolute lattice energies with
various methods. The X23 is based on the C21 database and
contains a mixture of hydrogen-bonded solids, vdW-bound
solids and solids with a mixture of the two interactions. Exper-
imental lattice energies were determined from experimental
sublimation enthalpies,86 theoretical vibrational contributions

(including vdW contributions) and, where available, experi-
mental heat capacities, with an expected accuracy just better
than chemical accuracy (4.2 kJmol!1), which is largely limited by
experimental uncertainties in sublimation enthalpies.41

The TS pairwise method has a mean absolute error (MAE) for
the X23 of 10.0 kJ mol!1 when coupled with the PBE0 func-
tional, systematically overestimating lattice energies with an
accuracy nearly an order of magnitude worse than that found
for small dimers in the S22. Including many-body contributions
with MBD yields an MAE of 3.9 kJ mol!1, within the chemical-
accuracy limit. The reduction in lattice energies is particularly
pronounced for vdW-bound systems, as can be seen in Fig. 3,
but is still important for hydrogen-bonded systems. The
reduction in lattice energies arises from long-range depolar-
isation of vdW interactions, as seen for C6 coefficients (Section
3.2) and repulsive many-body contributions, as would be partly
obtained with the ATM expression (Section 3.1).

A number of other pairwise approaches have been tested
with the C21 and X23 databases, including XDM, D2 and
D3.19,41,87 These methods have better MAEs than the TS pairwise
approach, with D3 coupled with the TPSS meta-GGA func-
tional88 being capable of reaching chemical accuracy as well.
However, these methods typically have a more exible and
empirical approach to tting and determining the C6 coeffi-
cients and damping of the short-range vdW interactions.19,29,76

For example, in the D2 approach there is a global and empirical
scaling of C6 coefficients as part of the tting process for the
density functional employed. D3 and XDM both use the Becke–
Johnson damping function,89 which features an additional
tting parameter compared to TS and does not damp the vdW
contribution to zero as R/ 0. The TS and MBD approaches are,
in part, tted to the S22 and S66 sets of small dimers to avoid
including effects from larger molecules. D3 employs a wider set
of benchmark data,30 while in XDM these parameters are oen
re-tted for a specic basis set,90 potentially factoring in other
contributions into the parameters.

Fig. 3 The relative error in the calculate lattice energies for 22 vdW-
bound and hydrogen-bonded systems. A positive value indicates
overestimation of the experimental lattice energies; see ref. 41 for
more details and a discussion on CO2.

3296 | Chem. Sci., 2015, 6, 3289–3301 This journal is © The Royal Society of Chemistry 2015
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MBD@ sSCS method to predict structural and binding prop-
erties of graphene bilayers, graphite, and hexagonal boron-
nitride (h-BN). Our results are compared with the available 
experimental data and with computational results obtained 
by high-level methodologies, like diffusion Monte Carlo or 
Random Phase Approximation.

IV.F.1. Graphene bilayers. Diffusion Monte Carlo (DMC) 
calculations of binding energies for the AB- and AA-stacked 
graphene bilayers have recently been obtained by Mosta-
ani et al [33]. The reported interlayer binding energies 
(EBind) and interlayer separations (d) are = −E 17.7Bind  meV 
and d0  =  3.384 Å for the AB-, and = −E 11.5Bind  meV and 
d  =  3.495 Å for the AA-stacked bilayer. In order to deter-
mine the interlayer binding energy and the interlayer separa-
tion predicted by the PBE  +  MBD@rsSCS method, we have 
performed a set of single point calculations with planewave 
cutoff of 600 eV and a mesh of        × ×16 16 1 k-points. The 
geometry of the unit cell used in these calculations has been 
derived from the experimental geometry of graphite [27, 28] 
with a lattice vector parallel with the graphene sheets being 
= =a a 2.461 2  Å and a lattice vector perpendicular to the 

sheets being c  =  40 Å. In figure 3, the PBE  +  MBD@rsSCS 
energy of the AB-stacked bilayer as a function of interlayer 
distance has been compared with the DMC results [33] and a 
fairly good agreement between these two profiles was found. 
The values of EBind (−20.7 meV) and d0 (3.436 Å) obtained 
by the PBE  +  MBD@rsSCS are reasonably close to the DMC 
values. The DMC energy profile for the AA-stacked bilayer is 
not available, hence we can compare only the values of EBind 
and d0. In this case, the agreement is slightly worse than for 
the AB-stacking: = −E 17.0Bind  meV (PBE  +  MBD@rsSCS) 
versus  −11.5 meV (DMC); d0  =  3.495 Å (PBE  +  MBD@
rsSCS) versus 3.641 Å (DMC).

IV.F.2. Graphite and hexagonal boron nitride. The optimized 
cell parameters and interlayer binding energies for graphite 
are presented in table 5. It is seen that the equilibrium crystal 
structure of graphite with an AB stacking is well reproduced, 

although the ‘c’ equilibrium distance is overestimated by 
about 0.1 Å in comparison with the experimental or RPA val-
ues. The binding energy calculated with the MBD correction 
is found to coincide exactly with the RPA value of 48 meV 
atom−1 [34], while the bulk modulus at equilibrium is calcu-
lated to be 29 GPa with MBD@rsSCS in comparison with a 
value of 36 GPa with RPA.

Concerning graphite with an AA stacking, no experimental 
results are available, therefore we will compare our results to 
RPA calculations (see table 5). As for AB graphite, the equi-
librium distance in the direction perpendicular to the layers is 
overestimated by about 0.1 Å, while the binding energy and 
the bulk modulus are slightly overestimated. Notice that the 
MBD@rsSCS binding energy of AB graphite was reported 
also in [6] with a result identical with the result of our calcula-
tion (the structural parameters were not reported in [6] since 
the geometry optimization was not performed).

In the case of hexagonal boron nitride (see again table 5), 
MBD@rsSCS provides a reasonable agreement with the 
experimental and RPA data for the equilibrium structure and 
the bulk modulus, but the binding energy is overestimated 
significantly (59 meV atom−1 with MBD@rsSCS in compar-
ison with 39 meV atom−1 with RPA [35]). This discrepancy 
is probably related to the fact that the Hirshfeld partitioning 
scheme [17] used in the calculation of atomic polarizabilities 
(see appendix A) is suboptimal for treating of ionic systems 
[36, 37].

Furthermore, we have studied the elastic force as a func-
tion of the interlayer spacing in graphene and in h-BN. The 
maximum of this function is the force required to completely 
pull apart the layers of a material. This peak force is very dif-
ficult to calculate directly from high-level energy calculations 
due to its strong sensitivity to unavoidable numerical errors in 
the energy. Indeed the RPA data available for graphene and 
h-BN were actually of insufficient accuracy to find the force. 
To obtain the illustrative force curves provided in figure  4 

Figure 3. Binding energy (EBind) for the AB-stacked bilayer 
of graphene as a function of interlayer distance (d). The 
PBE  +  MBD@rsSCS results are compared with high-level 
diffusion Monte Carlo (DMC) data [33].
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Table 5. Lattice parameters, interlayer binding energies, and bulk 
moduli for graphite and hexagonal boron-nitride.

Method
a 
(Å)

c 
(Å)

EB (meV 
atom−1)

B0 
(GPa) Reference

Graphite (AB stacking)
Expt. 2.46 6.71 43, 

35 10± , 
52 5±

34–42 [27, 46–48]

RPA n.a. 6.68 48 36 [34]
PBE  +  MBD@
rsSCS

2.46 6.82 48 29 This work

Graphite (AA stacking)
RPA n.a. 3.5 36 18
PBE  +  MBD@
rsSCS

2.46 3.61 40 26 This work

h-BN
Expt. 2.50 6.66 — 37 [49]
RPA n.a. 6.60 39 n.a. [35, 50]
PBE  +  MBD@
rsSCS

2.50 6.59 59 30 This work
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MBD@ sSCS method to predict structural and binding prop-
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Which functional to use?

• LDA

- nice covalent systems

- simple metals


• DFT+U

- strongly correlated systems (localised d and f orbitals)

- Mott insulators


• GGA

- molecules

- hydrogen-bonded materials

- transition metals

- magnetic systems


• Hybrid and screened hybrid exchange

- band gaps

- magnetic systems


• Dispersion corrected DFT (mostly GGA)

- molecular crystals

- layered materials


• meta-GGA

- careful optimism: improves on most properties, 

including mid-range van der Waals


